Re-engineering of CYP2C9 to probe acid-base substrate selectivity.
نویسندگان
چکیده
A common feature of many CYP2C9 ligands is their weak acidity. As revealed by crystallography, the structural basis for this behavior involves a charge-pairing interaction between an anionic moiety on the substrate and an active site R108 residue. In the present study we attempted to re-engineer CYP2C9 to better accept basic ligands by charge reversal at this key residue. We expressed and purified the R108E and R108E/D293N mutants and compared their ability with that of native CYP2C9 to interact with (S)-warfarin, diclofenac, pyrene, propranolol, and ibuprofen amine. As expected, the R108E mutant maintained all the native enzyme's pyrene 1-hydroxylation activity, but catalytic activity toward diclofenac and (S)-warfarin was abrogated. In contrast, the double mutant displayed much less selectivity in its behavior toward these control ligands. Neither of the mutants displayed significant enhancement of propranolol metabolism, and all three preparations exhibited a type II (inhibitor) rather than type I (substrate) spectrum with ibuprofen amine, although binding became progressively weaker with the single and double mutants. Collectively, these data underscore the importance of the amino acid at position 108 in the acid substrate selectivity of CYP2C9, highlight the accommodating nature of the CYP2C9 active site, and provide a cautionary note regarding facile re-engineering of these complex cytochrome P450 active sites.
منابع مشابه
Limited applicability of 7-methoxy-4-trifluoromethylcoumarin as a CYP2C9-selective substrate.
Fluorometric substrates selective for various cytochrome P450 isoforms (P450s) have great advantages in in vitro enzyme inhibition and induction studies because they are highly sensitive and suitable for rapid screening. 7-Methoxy-4-trifluoromethylcoumarin (MFC) has been reported as a CYP2C9-selective substrate. The present study investigated the relative catalytic selectivity of several human ...
متن کاملCYP2C9 inhibition: impact of probe selection and pharmacogenetics on in vitro inhibition profiles.
Drug-drug interactions may cause serious adverse events in the clinical setting, and the cytochromes P450 are the enzyme system most often implicated in these interactions. Cytochrome P450 2C is the second most abundant subfamily of cytochrome P450 enzymes and is responsible for metabolism of almost 20% of currently marketed drugs. The most abundant isoform of this subfamily is CYP2C9, which is...
متن کاملEvaluation of CYP2C9 activity in rats: use of tolbutamide alone and in combined with bupropion
A “cocktail”of several probe drugs is often used to evaluate metabolic activity of multiple cytochrome P450 enzymes in one session. Some interactions among probe drugs can appear and may impact the rate of biotransformation of other ones. Our presented work was to aim on the influence of bupropion on rat cytochrome P450-mediated metabolism of tolbutamide. The biotransformation rates of tolbutam...
متن کاملEvaluation of CYP2C9 activity in rats: use of tolbutamide alone and in combined with bupropion
A “cocktail”of several probe drugs is often used to evaluate metabolic activity of multiple cytochrome P450 enzymes in one session. Some interactions among probe drugs can appear and may impact the rate of biotransformation of other ones. Our presented work was to aim on the influence of bupropion on rat cytochrome P450-mediated metabolism of tolbutamide. The biotransformation rates of tolbutam...
متن کاملEffects of salidroside on rat CYP enzymes by a cocktail of probe drugs
Objective(s): In this study, we aimed to evaluate the effect of salidroside on the activities of the different drug-metabolizing enzymes CYP1A2, CYP2B6, CYP2C9, CYP2D6 and CYP3A4 in rats, in which a specific probe drug was used for each enzyme. Materials and Methods: After pretreatment with salidroside, five probe drugs were simultaneously administered to rats by gavage. The given dose was 2.0 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 36 10 شماره
صفحات -
تاریخ انتشار 2008